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Abstract
The one-dimensional spin–Peierls model with quantum phonons is studied with
an optimal phonon method combined with the density matrix renormalization
group. By calculating the ground state in the sector Sz = 1 I obtain a
soliton–antisoliton pair. The soliton is compared to nuclear magnetic resonance
experiments which image the soliton lattice present in CuGeO3 under a high
magnetic field. Reasonable agreement with experiment can be achieved by
choosing a large value of the phonon frequency and the spin phonon coupling
constant. This indicates that CuGeO3 is in a non-adiabatic strongly coupled
parameter regime. A robust feature of the calculations is an attraction between
solitons even without interchain coupling.

1. Introduction

The study of spin–Peierls systems has been invigorated by the discovery [1] of the remarkable
spin–Peierls material CuGeO3. A variety of experimental techniques can be applied to this
material due to the fact that very good large single crystals can be grown. One striking
experiment is the imaging of the soliton lattice using nuclear magnetic resonance (NMR) [2,3].
At low temperature and strong magnetic fields, the magnetization of spin–Peierls materials
develops a periodic modulation [4]. In the above-mentioned NMR experiment, the observable
is the average value of the spin Sz as a function of spin position along the one-dimensional
chains of CuGeO3.

It is natural to try to describe these experiments in terms of a one-dimensional spin–
Peierls model, i.e. an isotropic spin- 1

2 Heisenberg chain coupled to Einstein oscillators (see
below for a more complete description). Due to the difficulty of dealing with both quantum
spins and quantum mechanical oscillators, as a first approximation it seems reasonable to treat
the oscillators classically. Such a model, however, is in gross disagreement with experiment.
For example, the calculated spin height W , W ≡ max(i, j)|Sz

i −Sz
j |, where Sz

i is the spin on the
ith site, is roughly four times too large in comparison to experiment [5,6]. It has been suggested
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that this discrepancy is due to the classical treatment of the oscillators [7,8]. Other experimental
observations, e.g. the triplet excitation gap dependence on dimerization [9], seem to require
that the ratio of the oscillator frequency 	 to the spin coupling J is of order one, therefore one
is in a non-adiabatic regime where the oscillators must be treated with quantum mechanics.

In a previous paper, I have investigated the spin–Peierls model with quantum mechanical
Einstein oscillators [10] using the density matrix renormalization group (DMRG) [11]. A spe-
cial optimal basis technique [12] was used to reduce the dimension of the state space of a single
oscillator from infinity to a finite (small) value after which standard DMRG techniques could
be applied. As a result of this study, it was verified that quantum fluctuations greatly reduced
the value of W and for very large chains there was reasonable agreement with experiment.

Although the above treatment of CuGeO3 seems encouraging, there are several aspects
that require further investigation. Firstly, in my previous study, the optimal phonons were
determined from a short chain with periodic boundary conditions while the DMRG calculation
was done with the infinite-system algorithm with free boundary conditions. Secondly, there
was a large finite-size effect with free boundary conditions and a rather uncertain extrapolation
to long chains was required to obtain agreement with experiment. Most importantly, there is
additional information contained in the NMR measurements. For example, consider the ratio R

defined as R = W/T where T is defined as the maximum over i of |Sz
i + Sz

i+1|. According to
my previous calculation (see figure 4 of [10]) for a 100-site chain with reasonable parameter
values, the ratio is approximately 5 and extrapolation to larger chains gives an even larger
value. This is in poor agreement with the measured R of about 1.5 [7].

The purpose of this paper is improve my previous DMRG study and see whether
the improved calculations can produce a better comparison to experiment. The technical
improvements will consist of using periodic boundary conditions and the finite-system
algorithm. The paper is organized as follows. In the next section I will recall the model
and the computational method that I have used. The third part of the paper gives the results of
the calculation and the final section consists of conclusions.

2. The model and calculational method

The model I will take for CuGeO3 is the one-dimensional spin–Peierls Hamiltonian. Isotropic
spin- 1

2 operators will represent the Cu atoms while the lattice degrees of freedom will be treated
as quantum Einstein operators. To set up the notation, the Hamiltonian is

H = Hph + J
∑

i

[(1 + g(b+
i + bi))(SiSi+1) + αSiSi+2] Hph = 	

∑

i

b+
i bi .

Si is the spin operator on the ith site and b+
i creates a bond phonon on the ith bond. In this choice

of units, b+
i + bi = xi , xi being the coordinate of the ith oscillator. The four parameters, which

must be set by comparison to experiment, are J , the nearest-neighbour spin–spin coupling, g,
the spin phonon interaction parameter, α, the second-nearest-neighbour spin–spin coupling,
and 	, the bare frequency of bond phonons. All energies are measured in terms of J (i.e.
J = 1) so there remain three parameters.

For many of my calculations I will use the parameter value α = 0.36. This is consistent
with spin susceptibility experiments where a reasonably large next-nearest-neighbour spin–
spin coupling is indicated [13,14]. However, to determine α one has to choose a Hamiltonian
and the Hamiltonians used to determine α have assumed classical oscillators. One can imagine
that if quantum oscillators are used, a different value of α is necessary. The parameters 	 and
g are not very well known and I will report calculations with a range of values. It is important
to note that I am working with a highly renormalized Hamiltonian; hence there is no direct
relationship between 	 and the phonon frequencies measured in neutron or Raman scattering.
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Let us recall what a soliton ‘looks like’ in this context. First consider the phonon subspace.
A soliton then corresponds to a region of transition from one sense of dimerization (i.e. the
two values of 〈xi〉) to the other sense. Hand in hand with the modulation of expectation value
of the oscillator coordinates is a modulation of the expectation value of Sz

i with the maximum
value occurring where the minimum coordinate expectation value arises [10]. The soliton is
distinguished from the antisoliton in that for the soliton, 〈Sz

i 〉 for sites i even is positive and
for i odd is negative, while for the antisoliton 〈Sz

i 〉 is negative for i even and positive for i odd.
The computational approach that I have used is to first find the optimal phonons by the

method of Zhang et al [12] by studying a ten-site chain with periodic boundary conditions.
From this calculation I extract two optimal phonons per site. These phonons are used for
calculations on long chains. For every choice of parameter values the optimal phonons need
to be recalculated. My previous work [10], where full details of the method are provided (see
also [12]), indicates that the transfer of the optimal phonons from short to long chains and
working with a small number of optimal phonons per site are both reasonable approximations.

Once the optimal phonons are obtained, I do a standard finite-system algorithm DMRG
calculation. The only slightly non-standard aspect of the calculation is the use of periodic
boundary conditions. To illustrate how the boundary conditions are handled, consider an
infinite-system algorithm calculation. Indeed, to provide input for the finite-system algorithm I
first do an infinite-system calculation up to the size of chain in which I am interested. Explicitly,
my DMRG for periodic boundary conditions is as follows: start with an eight-site chain (or
any other chain where one can find the ground state). There are eight spins and eight bond
oscillators with the leftmost oscillator denoted as n0 and the leftmost spin denoted s1. Calculate
the ground state. From the ground state, form the density matrix for the system consisting
of the five leftmost oscillators and the four leftmost spins and find the optimal basis for the
system block. Now proceed to a chain with twelve sites, where there are twelve spins and
twelve bond oscillators, and consider a truncated state space consisting of product states of the
form |n0〉|s1〉|λ〉|s6〉|n6〉|s7〉|λ′〉|s12〉. Here |λ〉 and |λ′〉 are optimal states of the five-oscillator,
four-spin block calculated from the eight-site chain. After calculating the ground state in this
state space, again compute the density matrix, the system here consisting of the leftmost six
spins and seven oscillators. This procedure is then iterated to reach the desired system size,
after which one does finite-algorithm sweeps. There is a choice involved for the state |λ′〉. One
can choose the states for the right block (i.e. |λ′〉) to be either reflections (as when one uses free
boundary conditions) or translations of the states of the left block. I have found that reflected
states provide lower energies and better numerical stability; hence reflected states have been
used. With my present implementation I am limited to chains of about 200 sites and 80 states
in the blocks due to computer time limitations.

3. Results of the DMRG calculations

In this section I will give the results of my DMRG calculations. The calculations are done
in the subspace Sz = 1; this subspace is of the greatest interest since one expects for Sz = 1
the ground state to contain a soliton–antisoliton pair. Since the Hamiltonian is rotationally
invariant, we can take a magnetic field along the z-direction. The energies of eigenstates in
the magnetic field are equal to the energies when no field is present minus a term proportional
to the magnetic field and the z-component of spin Sz. If the magnetic field is large enough,
the ground state in the sector Sz = 1 is the ground state. From the soliton–antisoliton pair I
can extract the quantities W and R discussed in the introduction. W and R can be directly
compared to the NMR experiments that image the soliton lattice.
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Let us first examine rather adiabatic parameter values (J/	 = 10), namely 	 = 0.1,
g = 0.2 and α = 0.36. More adiabatic parameter values are easier to compute in the sense
that the ground state consists of a soliton–antisoliton pair even for rather small chains. For
these parameter values, I will display results for a 100-site chain; however, similar results are
obtained for a 52-site chain. For a 100-site chain, with 80 states in the blocks, the ground state
energy (for Sz = 1) is −77.483. This calculation involved finding the ground state of matrices
of rank 100 000 using the Davidson algorithm [15]. Computing and finding the ground state of
these matrices for each step in a sweep imposes a size limit of order 80 states for the dimension
of the blocks. By way of comparison, the infinite-chain algorithm with 120 states in the block
gives an energy of −77.475.

In figures 1(a) and (b) I plot the expectation value of the z-component of the spin at the
ith site 〈Sz

i 〉 versus the site. Figure 1(a) is the result of the infinite-system algorithm, while
figure 1(b) gives the results after one sweep, additional sweeps having a small effect on 〈Sz

i 〉.
It took about three days on an Intel 500 MHz Pentium 2 Xenon processor to compute this
figure. In an exact calculation, 〈Sz

i 〉 would be a constant, since the model is translationally
invariant for periodic boundary conditions. However, a DMRG calculation breaks translational
invariance, allowing a soliton–antisoliton pair to form. Qualitatively, figure 1(a) and (b) are
similar; however, there are significant quantitative differences. From figure 1(a), one can
extract W = 0.32, R = 2.7 and from figure 1(b), W = 0.22, R = 2.9. Since the finite-
system algorithm gives a lower energy (−77.483 versus −77.468) I take it to be more accurate
and the greater accuracy of the finite-system algorithm is in agreement with standard DMRG
‘wisdom’ [11]. In comparison to experiment, W at 0.22 is a factor of approximately four times
too large and R = 2.9 is too big by a factor of approximately 2. It is perhaps not too surprising
that I do better with R than with W since the ratio g/	 has been chosen to be fairly large. From
my experience with free boundary conditions, larger ratios g/	 give smaller R-values. For
example, in figure 4 of [10] g/	 = 0.5, a small ratio, and the R-value is roughly 5. In addition,
I have done calculations for 	 = 0.1, g = 0.1, α = 0.36 using the finite-system algorithm
and periodic boundary conditions for a chain with 200 sites. With this smaller value of g/	,
I find R = 4.2. Hence, to reduce the value of R, it seems that the ratio g/	 has to be large.

A striking feature of figure 1(b), as compared to the less accurate figure 1(a), is that the two
solitons appear to attract each other. In experiments, a soliton–antisoliton bound state has been
observed [16]. A previous treatment of the spin–Peierls model with quantum phonons, which
treated smaller chains, indicated no binding between solitons and the attraction observed in
experiment was attributed to interchain interaction [17].

To cure the problem of too large W and R, I have studied the possibility of decreasing
the second-neighbour coupling α and the possibility of increasing the phonon frequency 	.
Let us first consider the experimentally less plausible alternative, decreasing α. In figure 2, I
have plotted 〈Sz

i 〉 for the parameters g = 0.2, 	 = 0.1, α = 0 for 100 sites. One notices that
the solitons are wider than for α = 0.36, with W decreasing to 0.19 and R increasing to 5.3.
Hence W improves slightly but R gets much worse. This behaviour can be rationalized by
noting that both g and α tend to increase the energy gap between the ground state and excited
states. Hence decreasing α tends to decrease the gap which in turn leads to a larger correlation
length, that is, wider solitons. Since increasing g decreases R, it can also be expected that a
decrease of α will tend to increase R.

To obtain better agreement experiment, one is led to increase the phonon frequency 	. In
figures 3(a) and (b) 〈Sz

i 〉 is shown for g = 0.4, 	 = 0.2, with α = 0 in figure 3(a) and α =
0.36 in 3(b). For the parameter values in figures 3(a), (b), W = 0.17 (0.12) and R = 3.7 (2.4).
It seems that we need, whatever α does, to further increase the phonon frequency. The physical
motivation is that larger 	 leads to larger quantum fluctuations and therefore W is reduced.
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Figure 1. Soliton–antisoliton profiles for a 100-site chain. The parameters are 	 = 0.1, g = 0.2
and α = 0.36. 〈Sz

i 〉 is plotted as a function of i. (a) was calculated with the infinite-system
algorithm while in (b) the finite-system algorithm was used.

I have thus studied the parameter values g = 1, 	 = 0.5 and a = 0.36 for 100 sites with
80 states in the blocks. However, in this case, the calculation does not converge to a soliton–
antisoliton pair. To remedy this problem I have considered a 200-site chain, the rationale being
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Figure 2. 〈Sz
i 〉 for the parameter values 	 = 0.1, g = 0.2, α = 0.

that as 	 increases the soliton width increases, and it becomes difficult for the soliton to fit into
the smaller system. For 200 sites one does obtain a soliton–antisoliton pair with W = 0.06
and R = 2. Figure 4 is a graph of 〈Sz

i 〉 for these parameter values. It appears that with a large
	 and g one can get reasonable agreement with experiment.

4. Conclusions

I have made calculations for a soliton–antisoliton pair for a variety of values of the phonon
frequency 	 and the spin phonon coupling g. By making proper choices of the parameters,
basically large 	 and large g, one can obtain reasonable agreement with NMR experiments
for the height W and the ratio R of the soliton. I do not claim that the parameter values that I
have found that fit experiment are unique. However, it does seem that fairly large values of 	

are necessary to fit the NMR data. It is interesting that a recent neutron scattering experiment
gives different values of W and R, W ∼ 0.2 and R ∼ 5 [18]. Therefore, according to the
neutron scattering results, one is in a rather adiabatic regime. It has been suggested that this
discrepancy between the two experiments arises from the differing timescales probed by NMR
and neutron scattering. The timescales probed by neutron scattering are approximately one
hundred times shorter than those probed by NMR. Hence, in the neutron scattering experiment
there is insufficient time for quantum fluctuations to be important [18].

A robust feature of my calculations is the attraction between solitons even without
interchain coupling. For example, there is clear evidence of attraction in figures 1(b), 3(b)
and 4. In figure 4 the solitons, at first glance, appear to have a repulsive interaction. However,
I am using periodic boundary conditions and hence the solitons are ‘touching’ at the 0th (200th)
site. This attraction between solitons is in agreement with experiment [16] and in disagreement
with previous theoretical calculations [17] where shorter chains were considered.
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Figure 3. 〈Sz
i 〉 for the parameter values 	 = 0.2, g = 0.4. In (a) α = 0, while in (b) α = 0.36.
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Figure 4. 〈Sz
i 〉 for the parameter values 	 = 0.5, g = 1, α = 0.36 for a 200-site chain.
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